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ABSTRACT 

 
Surface mining activities result in multiple changes to the structure and function of ecosystems across the Appalachian 

Mountains of the eastern United States, including the creation of numerous wetlands via the construction of artificial 

retention ponds and flattened topography that alters surface runoff. While past work has assessed the impacts of such 

wetland creation on native Appalachian wildlife, little is still known about if and how wetlands created on active and 

former surface mines are used by waterfowl taxa. We performed a seasonal study of wetlands on two former surface 

mine complexes in Wise County, Virginia in 2016 and 2017 to assess waterfowl species’ use of such wetland habitats. 
We found substantial waterfowl diversity at wetlands on former surface mines, encompassing 16 species and including 

both native residents and passage migrants. Nearby unmined wetlands had similar diversity, with 19 species 

inventoried over the same period. Several of these species are uncommon within the Appalachian region and seem to 

be tied to the passage of high-latitude storm systems in winter months. Our results suggest that wetland creation on 

former surface mines may supplement available habitat for both resident and migratory waterfowl across the Virginia 

coalfields, and we provide a preliminary inventory of such taxa that can guide future work. 

 

Keywords: Appalachia, coal, ecology, pond, wildlife. 

 

 
 

INTRODUCTION 

 

 The Appalachian Mountains of the eastern United States have experienced extensive 

landscape change as a result of surface coal extraction, with an estimated 5900 km2 of surface-

mined and reclaimed habitats created as a result of mineral extraction to date (Townsend et al., 

2009; Pericak et al., 2018). These activities have had pronounced impacts on habitats within the 

Appalachian region, particularly with respect to the conversion of temperate hardwood forest 
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ecosystems to grassland or shrubland habitats on reclaimed surface mines. Reduced forest cover 

and replacement by grasslands, for example, is a driver of altered ecosystem dynamics on mined 

sites (Zipper et al., 2011; Gurung et al., 2018), while altered topography and fragmented ridgetop 

forests exert substantial control over the ecology of terrestrial taxa (Wickham et al., 2013; Hinkle 

et al., 2018; Maigret et al., 2019; Margenau et al., 2019). 

Surface mining activities also result in the widespread creation of wetland habitats on 

formerly steeply-sloped terrain. Many wetlands on surface mines are formed incidentally from 

topographic changes that reduce surface runoff and enhance the pooling of water following 

precipitation events, while others are intentionally constructed as retention or settling ponds to 

mitigate water quality concerns related to sedimentation and runoff (Wieder, 1989; Atkinson & 

Cairns, 1994; Atkinson, 2010). While few estimates exist in the literature of how much new 

wetland area has been created due to surface mining regionwide, mining practices have likely 

driven the large-scale creation of new wetland habitats in physiographic regions that were not 

historically characterized by a high density or number of wetland habitats due to steep terrain 

(Tiner, 1986; Thompson et al., 2007). 

Past research has shown that surface mine-associated wetlands increase habitat availability 

for a number of taxa, including herpetofauna (Lacki et al., 1992; Lannoo et al., 2009), mammals 

(Brenner & Hofius, 1990; Lacki et al., 1991), and birds (Rumble, 1989; McKinstry & Anderson, 

2002). However, little information currently exists related to the use of mine-associated wetlands 

by waterfowl in the central Appalachian region, particularly from the coalfields of the Cumberland 

Mountains in eastern Kentucky and southwestern Virginia. Nevertheless, this region is located 

between two major waterfowl flyways (Lincoln, 1935; Nichols et al., 1995), with presumably a 

diverse regional species pool that may make use of wetlands formed on former surface mines. 

Understanding this habitat use will be critical to both managing wetlands on former surface mines 

as wildlife habitat and understanding the regional dynamics of waterfowl populations across the 

broader landscape. 

From November 2016 to April 2017, we performed a survey of waterfowl at wetlands on 

two former surface mine complexes in Wise County, Virginia—the most heavily surface mined 

county in Virginia and one of the most mining impacted counties in the Appalachian region. Our 

goal was to produce the first formal inventory of waterfowl taxa using mine-associated wetlands 

across the Virginia coalfields. We also examined waterfowl diversity at two naturally occurring 

wetland complexes across the same area to compare waterfowl use of natural habitats with those 

artificially created on former surface mines. 

 

METHODS 

 

We selected two wetland habitats for study from two large surface mine complexes in Wise 

County, Virginia: a 120 ha surface mine on Dale Ridge near Coeburn, Virginia and a 100 ha 

surface mine encompassing the headwaters of Yellow Creek near Wise, Virginia (Fig. 1). 

Wetlands on both sites were large (>0.5 ha) impoundments constructed for sediment retention and 

erosion control and were surrounded primarily by large monocultures of planted, non-native 

vegetation (Elaeagnus umbellata and Lespedeza sericea), with Typha spp. as the predominant 

emergent vegetation in the wetlands proper. All wetlands were of similar age, being constructed 

in the 1980s-1990s, and none were associated with any inventoried locations experiencing acid 

mine drainage or related water quality issues (Virginia DMME, 2020), due to their reliance 

primarily on surface runoff.  
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Figure 1. Map of study sites. Highlighted area in inset map denotes location of the study area relative to the rest of 

Virginia. Surface mining polygons were derived from data originally published by Pericak et al. (2018). 

 

In addition to mine-associated wetlands, we also performed waterfowl inventories at two 

wetland habitats not associated with surface mines (Fig. 1). The first was a 1.42 ha wetland formed 

due to beaver impoundments on Staunton Creek on the south slope of Stone Mountain. This site 

is surrounded by dense mixed hardwood forest, with predominantly open water and emergent 

vegetation in the wetland proper. The second site was a 2.42 ha wetland located near the 

headwaters of Bear Creek near Wise, Virginia. This site is surrounded by mixed hardwood forest 

interspersed with planted White Pine (Pinus strobus) and is characterized by predominantly open 

water. We estimated the wetland area, canopy cover, and proportion of open water at all sites using 

0.3 km pixel resolution orthophotography (Virginia Geographic Information Network, 2017) in 

ArcGIS v.10.1 and field visits to each wetland. General wetland habitat characteristics were similar 

across all sites, with the exception of the mined/unmined context of each wetland (Table 1).  
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Table 1. Habitat characteristics of four wetlands used for waterfowl inventories in 2016 and 2017. 

 

Wetland Type Size 

(ha) 
Elevation 

(m asl) 
Canopy 

Cover (%) 
Open 

Water (%) 
Predominant 

upland vegetation 

Dale Ridge Mined 1.61 1990 8.1 71.4 Scrub/Shrub 

Yellow 

Creek 

Mined 0.94 2500 0 70.6 Scrub/Shrub 

Bear Creek Unmined 2.42 2550 8.7 73.6 Mixed Hardwood 

Forest 

Staunton 

Creek 

Unmined 1.42 1670 59.2 38.0 Mixed Hardwood 

Forest 

 

Accessibility restrictions imposed by a high regional rate of private landownership 

precluded a fully random selection of wetlands from the broader region as study sites, although we 

selected individual wetlands at random from available public lands and accessible surface mines. 

We inventoried waterfowl by way of automated surveys using a Bushnell eight-megapixel 

Trophy Cam motion-sensitive game camera (Overland Park, Kansas) installed at each site. Game 

cameras were installed on 1 November 2016 and sampled until 1 April 2017, with visits made 

approximately every other week during this time period to check camera operation and download 

photographs. While it was not possible to place the entirety of each wetland within each camera’s 

field of view, we chose locations for camera installation at each site along the wetland margin that 

provided the maximum viewable extent of both the wetland and adjacent vegetation along its 

margin.  

We supplemented automated sampling with regular vantage-point surveys at each site. 

Vantage-point surveys were performed by selecting a location above the wetland that provided the 

best view of the habitat, with weekly surveys (also from 1 November 2016 to 1 April 2017) 

conducted at one-hour intervals randomized within the constraints of site accessibility. We then 

recorded the species seen in both vantage-point surveys and automated game camera observations, 

pooling these data to create a list of detected species at each site. We used species accumulation 

curves (Gotelli & Caldwell 2001) following the completion of the sampling period to assess 

species richness against overall sampling effort across mined and unmined sites. We also grouped 

species inventoried during our surveys into classifications reflecting their regional status (native 

breeding, native non-breeding, or passage migrant) using distributional data provided by the IUCN 

Red List for Birds (BirdLife International 2019). 
 

RESULTS 

 

We recorded 23 total waterfowl species at the wetland sites inventoried for this study 

(Table 2) across 875 game camera observations and 19 hours of vantage point surveys. While 

overall species richness was similar between mined and unmined wetlands (16 versus 19 species, 

respectively), there was some turnover in species between these general types of sites. Specifically, 

we recorded three species (Anas crecca, Mareca americana, and Anser rossii) at mined sites but 

not from unmined sites in the same general vicinity. By contrast, we recorded seven species (Anas 

rubripes, Aythya collaris, Oxyura jamaicensis, Mergus merganser, Anser caerulescens, and Anser 

albifrons) at unmined sites that were not observed at wetlands on nearby mined sites. Species 

accumulation curves approached an asymptote across both mined and unmined wetland groups 

(Fig. 2), suggesting adequate sampling of local waterfowl fauna across these wetland types. 
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Table 2. Waterfowl taxa detected across wetlands on mined and unmined sites in the Virginia coalfields in 2016-

2017. Plus signs denote detection; species statuses reflect those defined by the IUCN Red List for Birds (BirdLife 

International 2019). “Unknown/Not Inventoried” denotes species lacking regional coverage in the aforementioned 

dataset. 

 

Species Name Common Name Mined 

Sites 

Unmined 

Sites 

Regional Status 

Aix sponsa Wood Duck + + Native Resident 

Anas acuta Northern Pintail + + Passage Migrant 

Anas crecca Green-Winged Teal +  Passage Migrant 

Anas platyrhynchos Mallard + + Native Resident 

Anas rubripes American Black Duck  + Native Non-

Breeding 

Anser albifrons Greater White-Fronted 

Goose 

 + Unknown/Not 

Inventoried 

Anser caerulescens Snow Goose  + Unknown/Not 

Inventoried 

Anser rossii Ross’s Goose +  Unknown/Not 

Inventoried 

Aythya affinis Lesser Scaup + + Passage Migrant 

Aythya americana Redhead + + Passage Migrant 

Aythya collaris Ring-Necked Duck  + Passage Migrant 

Aythya marila Greater Scaup + + Unknown/Not 

Inventoried 

Branta canadensis Canada Goose + + Native Non-

Breeding 

Bucephala albeola Bufflehead +  Passage Migrant 

Fulica americana American Coot + + Passage Migrant 

Lophodytes cucullatus Hooded Merganser + + Native Resident 

Mareca americana American Wigeon +  Unknown/Not 

Inventoried 

Mareca strepera Gadwall + + Unknown/Not 

Inventoried 

Mergus merganser Common Merganser  + Unknown/Not 

Inventoried 

Mergus serrator Red-Breasted Merganser  + Passage Migrant 

Oxyura jamaicensis Ruddy Duck  + Passage Migrant 

Podilymbus podiceps Pied-Billed Grebe + + Native Resident 

Spatula discors Blue-Winged Teal + + Passage Migrant 
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Figure 2. Species accumulation curves for unmined (black line) and mined (gray line) sites during automated 

waterfowl sampling in 2016 and 2017.  

 

Waterfowl recorded across all wetlands were primarily passage migrants that were 

generally observed following the passage of large storm systems during winter and early spring. 

Most initial observations of species were recorded in December and January (Table 3), particularly 

in the 24-48 hours following the passage of such weather systems. Waterfowl observations 

recorded by automated game cameras peaked during early morning, particularly just prior to and 

after local sunrise, with a secondary peak in late afternoon and evening (Fig. 3). Most species 

recorded during surveys are known from the larger physiographic context of the study area, 

although three species (Anser caerulescens, Anser rossii, and Anser albifrons) are considered 

uncommon across this region and form, to our knowledge, the first recorded observations of these 

species from the Virginia coalfields in the peer-reviewed literature. 
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Table 3. Waterfowl detections by month at four study sites across southwest Virginia in 2016-2017. Dale Ridge and 

Yellow Creek are wetlands formed on former surface mines; Bear Creek and Staunton Creek are naturally-occurring 

wetlands not associated with surface mines. Shaded months for a species indicate detection during that month. 

 

 
 

 
 

Figure 3. Proportion of game camera images collected at various times of day across all sites during 2016 and 2017.  
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DISCUSSION 

 

To our knowledge, our work provides the first survey of waterfowl from surface mine 

associated wetlands in the Virginia coalfields region and from the Cumberland Mountains region 

of southwest Virginia, in general. We found substantial waterfowl diversity within this region, 

both at artificial wetlands on former surface mines and wetlands not associated with mined lands. 

Our overall inventory of waterfowl taxa is indicative of species known from both the Mississippi 

and Atlantic Flyways (Bellrose, 1968; Heusmann & Sauer, 2000), with most taxa being passage 

migrants inventoried during and shortly after the passage of major storm systems during winter 

months. Such storm systems – which typically occur as low pressure systems passing to the north 

or south of the central Appalachian region, leading to winter weather conditions following a frontal 

passage – are one of the predominant weather scenarios leading to prolonged cold air and snowfall 

across the southern and central Appalachians (Perry et al., 2007; Perry et al., 2010). Past studies 

have found that such storm systems and related measures of winter severity (consecutive days of 

cold temperatures, snow depth, and snow cover duration) are a major factor influencing the timing 

and intensity of North American waterfowl migrations (Notaro et al., 2014; Schummer et al., 

2014).  

We noted many of our observations of passage migrants, particularly those species 

consisting only of observations of one or a few individuals on a single survey visit, co-occurring 

with the passage of strong storm systems and associated outbreaks of cold temperatures and 

snowfall across our study area. In fact, the majority of our waterfowl observations occurred during 

December and January, when such storm systems were most active during our study period. By 

contrast, we did not observe dramatic changes in observations of more year-round wetland 

residents, such as Wood Ducks, Canada Geese, and Mallards, corresponding with these same storm 

systems. While this suggests that significant winter storm systems may facilitate the movement of 

some migratory waterfowl species into the Cumberland Mountains, our small number of sampled 

wetlands and a lack of context data in the form of past waterfowl surveys within our study area 

precludes a definitive link between the passage of weather systems and waterfowl movements 

within the region. Our observations, however, present opportunities for future, hypothesis-driven 

work seeking to investigate a link between weather conditions and waterfowl movements within 

the central Appalachians, similar to those observed in other states (Schummer et al., 2010). 

We found highly similar waterfowl species at wetlands on both mined and unmined sites, 

despite some variability in species composition across individual wetlands. Wood Ducks and 

Mallards both appeared to be especially abundant at wetlands on former surface mines and 

unmined reference sites. Both species are common at naturally-occurring wetlands in the broader 

Appalachian region and have been inventoried in multiple previous studies (Boynton, 1994; 

Bulluck & Rowe, 2006; Zimmerman et al., 2015). However, we additionally recorded seven 

species that we found exclusively at wetlands associated with unmined sites and three species 

exclusively associated with wetlands formed as a result of surface mining activities. 

One outstanding question not addressed by our dataset is whether such taxa inventoried 

solely at mined or unmined sites are reflective of an actual preference for particular habitat types. 

Because our survey methodology primarily used automated survey methods that did not allow for 

a comprehensive assessment of the entirety of each site nor information regarding the frequency 

of recaptures in game camera images, we did not feel confident using count data to make inferences 

about the relative abundance of waterfowl species at each site. This is especially relevant since our 

game cameras likely captured multiple images of the same individuals moving throughout 
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wetlands during particular days. Similarly, it is likely that we may have missed observations of 

uncommon species, despite species accumulation curves suggesting a relatively thorough 

sampling effort.  

Similarly, our mined and unmined sites were located within substantially different 

landscape contexts related to the history of surface mining (or lack thereof) at a given site. The 

typical forest types across our study region are generally mixed mesophytic forests interspersed 

with more xeric hardwood forests on upland ridges (Braun, 1942). However, surface mining 

activities replace these forest types with grass or shrub-dominated environments that often are 

characterized by exotic or invasive vegetation and facilitate changes to ecosystem services 

following mining (Zipper et al., 2011; Gurung et al., 2018). These differences ultimately result in 

more open-canopy wetlands and may also influence wetland plant assemblages and other structural 

characteristics of wetlands that may be key to resident fauna (Branduzzi et al., 2020), although 

little work has been performed in our immediate study region to gauge these specific impacts. 

Disentangling if and how the landscape contexts of wetlands on surface mines impact waterfowl 

presence and abundance differently from local-scale wetland features may be especially crucial 

for future work expanding on our data. 

As a result of the aforementioned limitations, we are cautious about making inferences 

about the relative rarity of particular species, as well as inferences about the apparent absence of 

particular species from general groupings of wetlands within a mined or unmined context. Our 

data are instead best viewed as a preliminary checklist of waterfowl using mine-associated 

wetlands across the Virginia coalfields rather than a definitive assessment of differences between 

waterfowl assemblages on mined and unmined sites. Future researchers may want to build upon 

this preliminary inventory to perform a more robust assessment of the detection of waterfowl taxa 

and their relative abundances at wetlands on both mined and unmined sites. Such a comparison 

may shed light on individual species' preferences for types of sites, as well as associations between 

those species and particular habitat variables at the local or landscape scale that are influenced by 

mineral extraction activities. 

Nevertheless, our surveys detected several species, including the Greater White-Fronted 

Goose, Snow Goose, and Ross’s Goose, that are more commonly encountered in regions well west 

(Prevett & MacInnes, 1972; Alisauskas, 1998; Abraham et al., 2005) and east (Hill &Frederick, 

1997; Gauthier et al., 2005) of the Cumberland Mountains and, to our knowledge, have never been 

inventoried from the Virginia coalfields in the scientific literature. One of these species (Ross’s 

Goose) was present at constructed wetlands associated with a former surface mine, and our 

encounters with each species were constrained to a single observation during vantage point 

surveys, most following the passage of major storm systems. These observations were likely the 

result of migratory behavior associated with such storm systems (Smith & Hayden, 1984), and all 

of these species have been informally reported in separate citizen science datasets from the larger 

region surrounding our study sites in past years (eBird, 2019). However, the use of artificial 

wetlands on former surface mines by Ross’s Goose appears to be a novel habitat report for the 

central Appalachian region.  

More broadly, our data suggest that the creation of artificial wetlands on surface mines 

across central Appalachia has not been inconsequential to waterfowl taxa—a factor that may be of 

interest to land and wildlife managers. We found evidence of substantial use of mine-associated 

wetlands by waterfowl, including by passage migrants and year-round residents. Wetlands on 

surface mines are often located in high-elevation environments that are typically not predisposed 

to natural wetland formation, given the proclivity for upland wetlands in the Cumberland 
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Mountains to form infrequently and be relatively small in size (Thompson et al., 2007, 2012).  

Beyond the general increase in the number and density of wetlands as a result of surface mining, 

an examination of the elevational and structural differences in wetland habitats between mined and 

unmined sites in the central Appalachian coalfields may help researchers gain further insight into 

if and how wetlands on former surface mines are influencing habitat availability for waterfowl and 

other wetland-associated taxa. 

Our data also were limited to the presence of waterfowl species and did not address 

parameters related to the health or demography of waterfowl populations. The selection of wetland 

habitats by waterfowl at any given site may be driven by factors such as food availability and water 

quality (Longcore et al., 2006; Kaminski & Elmberg, 2014) - features that may be influenced by 

mineral extraction and subsequent reclamation activities and were not addressed by our presence-

only dataset. Past work, for example, has found that some mine-associated wetlands, such as 

tailings ponds and retention basins, may present a toxicity risk to waterfowl when acidity and metal 

levels are high (Isanhart et al., 2011). Our study sites did not contain any such known 

contamination issues, although it is plausible that some wetland sites throughout the Appalachian 

coalfields may present similar risks. While our inventory provides a foundation for addressing the 

management of regional waterfowl populations on wetlands associated with former surface mines, 

these questions will be crucial for appropriately designing management guidelines for such taxa in 

future work. 
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